GetBetaDiversity
GetBetaDiversity.Rd
This function calculates the beta diversity for a given mmo object, method (Generalized Unifrac, bray, jaccard, or CSCS), normalization method, distance metric, and optional feature filtering. Then it returns a distance matrix of beta diversity values. The Generalized UniFrac and CSCS method requires a distance matrix of feature dissimilarity, which is calculated using the specified distance metric. Bray-Curtis and Jaccard methods are calculated using the vegan package, not considering feature dissimilarity.
Usage
GetBetaDiversity(
mmo,
method = "Gen.Uni",
normalization = "None",
distance = "dreams",
filter_feature = FALSE,
feature_list = NULL,
filter_group = FALSE,
group_list = NULL
)
Arguments
- mmo
The mmo object containing feature data and metadata
- method
The method of beta diversity calculation. Options are 'Gen.Uni' for Generalized UniFrac, 'bray' for Bray-Curtis, 'jaccard' for Jaccard, or 'CSCS' for Compound Similarity and Chemical structural and compositional similarity (default: 'Gen.Uni')
- normalization
The normalization method to use for feature data. Options are 'None', 'Log', 'Meancentered', or 'Z' (default: 'None')
- distance
The distance metric to use for calculating dissimilarity. Options are 'dreams', 'm2ds', or 'cosine' (default: 'dreams')
- filter_feature
A boolean indicating whether to filter the feature data by a specific list (default: FALSE)
- feature_list
A list of feature names to filter the feature data by, if filter_feature is TRUE (default: NULL)
- filter_group
A boolean indicating whether to filter the feature data by a specific group list (default: FALSE)
- group_list
A list of groups to filter the feature data by, if filter_group is TRUE (default: NULL)
Examples
if (FALSE) {
beta_diversity <- GetBetaDiversity(mmo, method = 'Gen.Uni',
normalization = 'None', distance = 'dreams', filter_feature = FALSE)
beta_diversity <- GetBetaDiversity(mmo, method = 'bray',
normalization = 'Z', filter_feature = TRUE, feature_list = Glucosinolates,
filter_group = TRUE, group_list = c('Control', 'Treatment1'))
}