Enrichment analysis for Canopus-predicted terms
CanopusLevelEnrichmentAnal.Rd
This function performs enrichment analysis for Canopus-predicted terms on a given list of features.
Usage
CanopusLevelEnrichmentAnal(
mmo,
list_test,
pthr = 0.1,
sig = TRUE,
term_level = "NPC_pathway",
representation = "greater"
)
Arguments
- mmo
The mmo object with sirius annotation and normalized data
- list_test
A vector containing names of features to analyze
- pthr
The threshold for adjusted p-value to be considered significant (default: 0.1)
- sig
A logical value indicating whether to return only significant terms (default: TRUE)
- term_level
The level of term to use for enrichment analysis Options are 'NPC_pathway', 'NPC_superclass', 'NPC_class', 'ClassyFire_superclass', 'ClassyFire_class', 'ClassyFire_subclass', 'ClassyFire_level5', or 'ClassyFire_most_specific' (default: 'NPC_pathway')
- representation
The representation type for enrichment analysis. Options are 'greater' for overrepresentation (default: 'greater')
Value
A data frame containing the enrichment results, including term level, term name, subset count, total count, fold enrichment, p-value, and adjusted p-value (FDR)
Examples
if (FALSE) {
# Perform enrichment analysis for a list of features using NPC_pathway level
sig_terms <- CanopusLevelEnrichmentAnal(
mmo, list_test = c("feature1", "feature2"), pthr = 0.1,
sig = TRUE, term_level = 'NPC_pathway', representation = 'greater'
)
# Perform enrichment analysis for a list of features using ClassyFire_class level and return all terms
all_terms <- CanopusLevelEnrichmentAnal(
mmo, list_test = c("feature1", "feature2"), pthr = 0.1,
sig = FALSE, term_level = 'ClassyFire_class', representation = 'greater'
)
}